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An effective numerical-analytical method of investigating parametrically excited oscillatory Hill-type systems, described by general 
boundary-value problems, is developed. It is assumed that the coefficients of the equation depend in an arbitrary non-linear way 
on a parameter, the eigenvalues of which are to be obtained. The approach to solving the generalized periodic boundary-value 
problem is based on the established differential relation between the eigenvalue and the value of the period (the length of the 
interval). The computational algorithm possesses the property of accelerated convergence, which enables many extremely subtle 
and difficult problems of constructing the dependences of the eigenvalues and eigenfunctions (the forms with the oscillations) 
on the index and parameters of the system, difficult to obtain by traditional approaches, to be successfully investigated. To illustrate 
the high efficiency of the method, a solution of the problem of the spatial angular oscillations of a dynamically symmetrical artificial 
satellite moving in a circular orbit is constructed. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider  the oscillations o f  a l inear system, described by the general ized periodic boundary-value  
problem for a Hill-type equat ion  [1] 

ii + r ( t ,L)u  = 0, u(0) = u(1), ti(0) = ti(1) 

0~<t~<l, ~ , ~ A  (r( t+l ,~,)  = r(t,~,)) 

(1.1) 

Here  r is a piecewise-cont inuous real funct ion of  the a rgument  t, which can be cont inued in a similar 
(piecewise-continuous)  way for  all I tl i> 0. In  particular, it can be cont inuous in t. It is assumed to be 
cont inuous  with respect  to the real pa rame te r  ~ o f  the function r, and cont inuously differentiable when 
~, e A; A is a set (a set o f  segments)  and admissible values of  the required pa ramete r  A. 

It is required to obtain the solution of  the generalized problem (1.1), i.e. to determine the eigenvalues 
and the functions u(t ,  ~). T h e  case o f  a discrete spect rum ~ e { ~ }  and the set of  modes  of  oscillation 

{Un(X)}, n = 1, 2 , . . .  are o f  part icular  interest for applications. The  coefficient r also usually depends  
on o ther  pa ramete r s  o f  the system ~ (geometrical ,  inertial, elastic, etc.), i.e. r = r(t, ~,, 7), 7 e F. It is 
required to construct  curves or  surfaces ~ ( 7 )  and the modes  of  oscillation un(t, Y) cor responding  to 
them (see below). 

Remarks. 1. In the case of the classical formulation of the periodic problem the function r is linear in ~; it is 
usually assumed that r =- Z. + 7q(t) (Hill's equation), in particular q =- cos 2nt (Mathieu's equation) or q ---=- sign 
(cos 2nt) (Meissner's equation); it is required to obtain ~(7), un(t, 7) (see [1-6]). 

2. A more general form of the equation aa + bu + cu = 0, where a, b and c are periodic functions of t and 
depend on the parameters ~ and 7, with corresponding assumptions regarding smoothness and sign definiteness, 
can be reduced to the form (1.1) [1-6]. Similarly, a system of two first-order equations with periodic coefficients 
(for example, the linear Hamilton equations) can be represented in the form (1.1). Situations when this reduction 
is difficult are also of interest for applied problems. 

3. In addition to the main 1/1 resonance and the 1/n resonances, the 2/n resonances can occur in system (1.1) 
and, possibly, also more complex combination resonances [5]. The determination of the corresponding 
values of 3,n(7) and the periodic solutions Un(t, 7) is of particular interest and is the purpose of the following 
investigations. 

4. In formulations of periodic boundary-value problems (unlike the Sturm-Liouville problem) the function r is 
not usually assumed to be positive definite for the values of t, ~, and 7 under consideration. This leads to substantial 
difficulties in using oscillation theorems and Sturm's comparison theorems [4] and considerable complications when 
constructing solutions and analysing them. 
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5. An investigation of the generalized periodic problem described by the Hill-type equation (1.1) is important 
for the theory of non-linear oscillations and stability [3, 5-7]. These problems arise in mechanics, applied celestial 
mechanics, electromechanics, hydrodynamics, the theory of elasticity, electrodynamics and atomic physics, etc. The 
main analytical and numerical results have been obtained for the classical cases of Hill's equation: Mathieu's and 
Meissner's equations [1-8]. There are no effective numerical-analytical methods and results of investigations of 
the generalized periodic boundary-value problems, due to the fundamental difficulties in solving them. 

6. The main properties and behaviour of the eigenvalues ~(~t) and the functions un(t, "[) of the generalized problem 
may differ essentially fxom the "standard" ones, well known for the classical problems mentioned above [1-9]. We 
will illustrate this assertion using simple examples for an Euler-type equation, for which a complete analytical solution 
can be obtained [4] 

r(t,~,)=(,~+t) -2, ~ , ~ A = { ~ : ~ > 0 ,  .~<-1}, 0~<t~<l 

-2~;(~2+1)-|],  kn (ex~2n(n+l/3'1~r3] -1) (1.2) 

u n (t) = Cn~ n (t)[~n sin 0 n (1)cos 0 n (t) + (1 - ~n c°S0n (l))sin 0 n (t)] 

~n(t)=(l+tl~n) ~,  X,,=~n(l), On(t)=qr31n~n(t), n=+l ,+2  .... 

Here cn are arbitrary constants. It follows from (1.2) that the eigenvalues ~ are concentrated in the region of 
~. = +0 (n/> 1) and ~, = -1 -0  (n ~< -1), and they tend exponentially to these values as In[ ~ ~. The eigenfunctions 
u~(t) (1.2) oscillate with respect to r when Inl is fairly large as rapidly as desired and, moreover, in an exotic way. 

The example when the function r = ~,2(1 + Lt) -2, where ~. > -1, can be investigated in a similar way. In expressions 
(1.2) one should make the replacement k ~ ~-1; we obtain the following approximate expressions for 

~n -- exp[2n'(n + ~ ) / . / 3 ] - 1 ,  n = _+1,_+2 .... (1.3) 

According to (1.2) and (1.3) ~ ~ +,~ as n ---) + ~ and ~ ~ k-1 as n ---) -oo. The corresponding eigenfunctions 
for large Inl also oscillate rapidly. 

Other examples can be considered which illustrate various unusual properties of the eigenvalues and eigen- 
functions. The spectrum of generalized periodic boundary-value problem (1.1) may be discrete (denumerable or 
finite), discrete-continuous or empty. In this case the discrete values of the spectrum can be both simple and multiple 
(for example, when r = const), to which one or two eigenfunctions correspond. 

7. Generalized problem (1.1) belongs to the class of non-self-conjugate operators, unlike the corresponding classical 
case. Such problems have a number of specific features, one of which is the form of the orthogonality condition 

I 

.[[r(t,~l,.)- r(t,,~,n)]un(t)u,,,(t)dt = O, r(t,~n)~r(t,,~m) (1.4) 
o 

For our further constructions we will need to know the norms of the functions un(t) with a certain weight. Taking 
the limit in (1.4) as ~ ---) ~ we obtain the expression (see below) 

Nn = S r~. (t, kn)U 2n (t)dt (1.5) 

Under additional conditions of sign-definiteness, imposed on the derivative r~ with respect to ~,, the expression 
for N, (1.5) has the meaning of the square of the norm of the function un(t) with weight r~ (t, ~ ) .  When the function 
r is linear in ~,; relations (1.4) and (1.5) are identical with those commonly known for self-conjugate boundary- 
value problems [1, 2, 4]. 

Using a formal  method ,  p rob lem (1.1) can be represented in the form of a continuous family of  classical 
p roblems,  in which ~, ~ A is a p a r a m e t e r  of  the family. In fact, we will consider  a p r o b l e m  for  ~t and U 
of  the fo rm 

(l+[~t+r(t,~,)]U=O, 0~<t~<l, U(0)=U(1) ,  /)(0)=/]I(1) 

I.t~{I.t.,(~.)}, U.,(t,%)=U(t, gm(~.),~.), L e A ,  m = l , 2  .... (1.6) 

Suppose  a fairly comple te  family of  solutions of  the auxiliary p r o b l e m  is cons t ruc ted  in accordance  
with (1.6). Then,  the required solution of  original p rob lem (1.1) is obta ined  by carrying out  the following 
opera t ions  
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kn=Argg . , ( k ) ,  k ~ A  (gm(k . )=0 ,  n=n(m)) 

un(t) = U(t,O, k . )  (1.7) 

This approach involves constructing a discrete set of functions lain(k) and determining their real zeros 
~ .  These constructions, as a rule, can only be carried out numerically for a comparatively small set of 
values of m (for the lower modes of oscillation) and corresponding n(m), which may require extremely 
expensive software. Analytically complete calculations can be carried out in the extremely rare cases 
when Eqs (1.1) or (1.6) are integrable in closed form (see examples (1.2) and (1.3)). An approach based 
on relations (1.6) and (1.7) is, however, useful at the preliminary stage of investigating problems of the 
existence of the required solution, since self-conjugate problem (1.6) allows the use of variational 
methods [3, 4]. This enables us to obtain effective upper limits of Ix~(X), for example, using the Rayleigh- 
Ritz method. We can also conveniently apply the well-developed shooting and finite-element methods 
to problem (1.6) in combination with the procedure of continuation with respect to the parameter k 
to construct rough estimates. 

2. T H E  M E T H O D  O F  A C C E L E R A T E D  C O N V E R G E N C E  F O R  S O L V I N G  
T H E  A U X I L I A R Y  P R O B L E M  

We will briefly describe the method of accelerated convergence, based on the introduction of a small 
parameter and the Lyapunov-Poincar6 perturbation method [5]. We will assume that, for a certain fixed 
value of k ~ A an estimate ~0~(k) is obtained, for example, using the variational approach (the 
Rayleigh-Ritz method or Rayleigh's principle), the finite-element method, the shooting method, etc. 
In a number of cases it is possible to obtain a value k ~ A for which an exact or approximate analytical 
solution is known (for example, as in the case of Mathieu's and Meissner's equations). For this I.t°(k) 
we construct a general solution V0m of Eq. (1.6) (the subscript m is fixed, so we will henceforth omit it 
for brevity) 

~) + [IXo (k)  + r(t, k) lV = 0, V o (t, k )  = C I Vi ° (t, k )  + C 2 V O (t, k )  

l) V(O)=O, V(O)=I; 2 ) V ( O ) = l ,  V(O)=O, Ci.2=const (2.1) 

Here V~x and 1~2 are particular linearly independent solutions of the two Cauchy problems 1 and 2, 
which for known Ix0 with chosen k e A can be constructed analytically or numerically, i.e. in the form 
of a computational procedure. 

We wi!l require that for a certain t = 0 > 0 conditions of type (1.6) are satisfied: V0(0 ) = V0(0), 
~(0)  = V0(0). The following relation for 0 follows from these boundary conditions, taking Liouville's 
theorem into account 

A°(O,k) =0,  A°(t,k) - Ql°(t,k)+ V° ( t , k ) -2  (2.2) 

Here A ° is the determinant of the matrix of the coefficients for C1 and C2. Note that the Wronskian 
is constant and equal to unity. 

0 We will further consider (2.2) as the equation for the unknown 0 (~, is fixed). When IX = ~t (Ix is the 
exact value), a root 0 = 1 exists, and, in view of the continuous dependence, for ~t ° sufficiently close to 

0 0 Ix a root 0 exists close to 0 = 1. The quantity 0 can be determined effectively, by numerical or analytical 
integration of Cauchy problems (2.1) and by calculating the determinant A°(t, k) using (2.2). 

It follows from the above that we can introduce as a natural measure of closeness of the initial 
approximation of the quantity ~t ° to IX a quantity e 

~ = 1 - 0  °, I~1<{1, 0 ° = a r g m i n l l - O ° l ,  0°(X)=ArgA°(0,~,)  (2.3) 
J 

It is reasonable to seek the roots 0o(2.3) of the equation A ° = 0 (2.2) in the neighbourhood of 0 = 1, 
which implies the smooth continua~ility of the function r to 0 > 1. The properties of the function 

0 0 A (t, k) are established by using numerical experiment. Note that when I.t + r > 0 the required quantity 
0 ° is the mth positive root. However, in applied problems the function r is sign-variable and, moreover, 
the required k corresponds to IX = 0. This makes it difficult to use the conclusions from Sturm's 
comparison theorems [4] and requires a thorough numerical investigation of the function A ° when 
determining 0 ° using (2.3). 
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Employing the methods of perturbation theory [3-5, 9], we will consider the problem of the local 
behaviour of Ix when the length of the interval 0 ~< t ~< 0 changes in the neighbourhood of the value 
0 = 1. Using the approach described in [9] we obtain (Z is a fixed number) 

[t = [to + eM o + O(cZ) 

M o = _(~,0 ~ (O o, ~) + ({,to (;L) + r(0 °, L))Vo 2 (0 °, ~,)) II V 0 II -2 

lim [t - [t° = Ix~ (~)o=]-(L/2 (1, ~,) + (~t(~,) + r(1, L))U ~ (1, ~,)) II U II -2 
e ~ 0  E 

(2.4) 

 p_pom, (2.5) 

We will further assume that the required value of 0 ° has been obtained. I fM ° ¢ 0, this value is simple, 
i.e. A°'(0°(~,), ~,) ¢ 0. The rank of the matrix mentioned above is then equal to unity, and the required 
solution V0 (2.1) can be represented in two equivalent forms 

V 0 (t, ~,) = C 1 [V I (t, ~,) + (1 - ~ (O °, 2~))I~'2 -I (0 °, ~,)V 2 (t, ~,)] = 

= C 2 [(1 - V 2 (O °,  ~))V~ -~ (O °, 7~)V 3 (t, Z,) + V 2 (t, g)]  (2.6) 

Here C12 are arbitrary constants, which can be chosen from the normalization condition IIV°ll z = 1. 
Both expressions (2.6) satisfy mixed boundary conditions of periodicity in the interval 0 ~< t ~< 0 °, which 
is established directly taking into account the definition of 0 ° (2.3). 

In the critical case when 0 ° is a multiple root, i.e. A°'(0°(~,), ~,) = 0, the rank of the matrix is equal 
to unity or zero. In the second case the solution V0 (2.1), which satisfies the boundary conditions, contains 
two arbitrary constants C1 and C2. This situation occurs, in particular, when r = const (Mathieu's, 
Meissner's or Hill's equations with 8 = 0) and, possibly, in other cases of equations equivalent to an 
equation with constant coefficients. For the function V0 one of the solutions is substituted into (2.4) 
(for C1 = 0 or C2 = 0); in the general case splitting of the eigenvalue occurs. 

We will consider solution (2.1)-(2.3), (2.6) of the boundary-value problem that has been constructed 
in the interval 0 ~< t ~< 0 ° as an approximate solution of the original problem (1.6). We will use it to 
calculate a refined value of [t, with an error O(E z) from (2.4) 

[tO)(~,) = ~o(~,) + IzMO(L), I I.tO)(L)- [t(~)I~<CeE 2 

M ° (z) = -[ Vo (o °, x) + ° <x) + ,(o °, x))Vo (o °, z)] H Vo ,-2 

Without loss of accuracy in powers of the small parameter e in the expression for M°(~,) (2.7) we can 
put 0 ° = 1, since 1 - 0 ° = e. On the basis of the refined value of [tO)(L) a general solution Vo O) of Cauchy 
problem (2.1) is constructed, and from conditions (2.2) and (2.3) we find the quantity 0 (1) , which determines 
the quantity E(1): E (1) = 1 -- 0(1)(~,) ,  where, according to (2.5) and (2.7), le(a)l <~ C~CeE 2. The solution just 
constructed is assumed to be approximate for the original problem (1.6) with accuracy O(e2). This simple 
procedure for refining the solution can be continued in the form of a recursive algorithm [10] 

l.t(k+l)(~,) = I.ttk)(~,) + e(k)M(k)(k), E (k) = 1 - Otk)(~,), k = O, 1, 2 .... 

g(k) (~,) = _[ ~,O(tC)2 (O(k), ~,) + ([tfk)(~,) + r(Ofk), ~,))Vo<k)2 (O(k), L)] II Vo (k) II -2 
(2.8) 

0'k'=argm)nll-0 *' l, 0~k)(Z,)=ArgA(k)(0,;~) 

c=c,g-, ,  

(2.7) 

Here IlV°ll z and IIU°ll z are the squares of the norm of the functions V0 and U, defined in the usual way. 
It follows from (2.4) that for the case M ° ~ 0 the following inequalities hold 
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Algorithm (2.1), (2.2), (2.6) and (2.8) possesses the property of accelerated (quadratic) convergence 
with respect to the parameter e. Two or three iterations with respect to k enable us to construct a virtually 
exact solution ~t(~,), U(t, IX, ~,) of auxiliary problem (1.6) when leCI - 0.1. 

Hence, using the effective numerical-analytical method of accelerated convergence we have 
constructed a solution of the classical periodic boundary-value problem (1.6) for any admissible value 
of ~,. The recursive algorithm involves successive refinement of the quantity ~t(k+l)(~,) (2.8) using the 
known estimate of IX(~(~), by numerical or analytical integration of the two Cauchy problems (2.1) 
Vl!k~ -a) and the determination of the root 0(k+l)(z,) closest to 0 = 1. In addition to integration and 
calculation of the solution of boundary-value problem v0(k+l)(t, ~) it is required to calculate the square 
of the norm. This operation can be carried out by a highly accurate method of numerical integration, 
for example, Simpson's method or when integrating the Cauchy problems, calculating the determinant 
and determining the quantity 0(k+~)(~,). It is well known [10] that the square of the norm IIV011 z can be 
represented in a finite form using the function W(t, ~,) 

0 

I lVoll ---- S vga, = v0<0, (2.9) 
0 

;~' + [It(L) + r(t,L)]W = -Vo(t, ~), W(0) = W(0) = 0 

We will now consider the original generalized problem (1.1), the solution of which can be obtained 
by a numerical or numerical-graphical method by solving auxiliary problem (1.6) for a sufficiently dense 
set of values of ~ ~ A. 

3. T H E  S O L U T I O N  OF T H E  G E N E R A L I Z E D  P E R I O D I C  P R O B L E M  

To construct the required function p(~,), ~, ~ A we will use the method of continuation with respect 
to a parameter. We will use the value of ~t obtained as the initial approximation Ix0 for ~, + 6L, where 
the addition fi~, is sufficiently small, which is established as a result of the numerical experiment from 
the condition for the algorithm described above to converge. The sign of the addition 8~ is sufficiently 
small, which is established as a result of the numerical experiment from the condition for the algorithm 
described above to converge. The sign of the addition 8~, should be chosen so as to reduce I~1 

I 

1 S r~(t,£) U2dt (3.1) sign 8~, = - sign Ix'(£)l.t(~,), la'(~.) = ~ 0 

The value and sign of the derivative IX'Q.) in (3.1) are found using the known solution for the previously 
specified value of X. The procedure of continuation with respect to the parameter £ is carried out until 
~t(£) = 0 and the corresponding £ is determined. It is natural to assume that ~t'(~) ~ 0 in the neighbour- 
hood of the values of £ under consideration. When ~t'(£) = 0 an additional investigation is required to 
analyse the behaviour of the function I-t(£) and to determine the possibility of other zeros to exist, i.e. 
other eigenvalues L. 

As a result we obtain a numerical-analytical method of constructing the required solution ~., Ix(t) of 
the original generalized periodic boundary-value problem (1.1) by solving the family of  solutions ~t(£), 
U(t, Ix, ~) of classical periodic boundary-value problems of the Hill problem type. 

Note that it is best to take, as the initial approximation, p0(~ + 5~), a quantity which leads to an 
error O(&/2) 

I-t°(~, + 8L) = I.t(~) + I.t'(~,)3~, sign(l,t'8~,) = -signl, t (3.2) 

where the quantity IX'(~) is found from (3.1). 
Using the scheme described above for refining ~t(~,), expression (3.1) for ~t'(~,) and the approximate 

relation (3.2), we can implement the procedure for refining the required value of ~,, based on the recursive 
formula (k = 0, 1, 2 . . . .  ) 

(3.3) 

Z, ~°~ = Z, °, ~tO. °) = o(e) ;  I.t~k)(~ ~k)) = o ( c  ~k)) 

Here ~0 is the known initial approximation 3. c A, chosen from additional considerations using 
variational or other methods (see above) and which ensures the c-smallness of the quantity I.t(L°). By 
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(3.3) the accelerated convergence k (k) ---> ~,, similar to (2.8), occurs, which enables the required solution 
k, g(t) of problem (1.1) to be constructed effectively. 

It should, however, be noted that the scheme described above for constructing a solution of the 
generalized problem may lead to excessive calculations, connected with the construction of the auxiliary 
function g(k) over a possibly extremely wide range of admissible values of ~ c A. This procedure can 
be simplified considerably if one uses the method of accelerated convergence for a direct refinement 
of a certain estimate ~0, which leads to a small value of the parameter e 

0 = Arg A(0, k0 ) (3.4) e = l - 0  °, IEI,~I, 0°=argm~nl-0~[ ,  0j 0 

A(t, k, °) =t i l ( t ,L° )+u2( t , 3 , ° ) -2  

O + r ( t , L ° ) u = O ;  l ) u (0 )=0 ,  0(0)=1;  2)o(0)=1,  0 ( 0 ) = 0  

The solution ~0~t, ~0), which satisfies the periodicity conditions in the interval 0 ~< t ~< 0 ° in the case 
of a simple root 0 °, is determined using the particular solutions Ul and ~2 (3.4) similar to (2.6). In the 
case of a multiple root the solution can have the form ~0 = ClVl + C2~2 (see above). The value of ~, 
is refined using the following recursive scheme 

~Lt*+I) = ~,(k) + e(k)L(0{*),~Jk)), 0~,) = 0(k~k))= argm!n I 1 -0~)1  
J 

0~ k) = 0j (~(k)) = Arg A(0, ~(k)), e~) = e(~(,)) = 1 - 0 ~*) 
o 

L(0(k), ~(k)) = _[r(0~k), ~(,)) u 2 (0(k), 3~k)) + 02 (0(k), ~k) )] / N(0(,), ~<,) ) (3.5) 

0 

N(O, ~,) = S r~(t, 2~) 02 (/, k)dt = fr0(0, ~.)w(0, ~,) - u0(0, ~,)ff(0, ~,) 
0 

f b + r ( t , L ) w = - r { ( t , L ) u  o, w(0)=w(0 )=0 ,  N e 0  

It is assumed that the "square of the norm" N (3.5) (see expression (1.5)) of the function ~0 with 
weight r~. in the interval 0 ~< t ~< 0 is non-zero. In the classical case when r(t, 9~) =- )~p(t) + q(t), where 
p(t)/> P0 > 0, a standard expression exists for the square of the norm with positive weight p(t). Note 
also that in the case of a multiple root 0 ° = 0(k °) splitting of the eigenvalue of the problem Z. in a small 
neighbourhood of ~, = k0 is possible. 

With the above assumptions the recursive method (3.4), (3.5) possesses the property of accelerated 
(quadratic) convergence with respect to the small parameter 8. In combination with the procedure of 
continuation with respect to a parameter of the generalized problem (1.1) it enables one to solve a 
number of interesting problems of the theory of oscillations, stability and mathematical physics with 
high efficiency. The algorithm can be tested by the numerical solution of model problems, for example, 
of the form (1.2) and (1.3) for which an analytical solution is known [10]. 

For practical calculations the following observation is extremely useful. If the function r(t, ~,) is even 
q- + 

in t, it follows from the identity u(t) =- u (t) + u-(t), where the function u (t) = (u(t) + u(- t )) /2  is an 
even solution, and the function u(- t )  = (u(t) - u(- t)) /2 is an odd solution, that the periodic boundary- 
value problem (1.1) can be split into two generalized Sturm-Liouville-type problems [11, 12], i.e. we 
have 

r(t, k ) -  r(-t, ~.); 1) u(0) = u(l) = 0; 2) /i(0) = ti(1) =0 (3.6) 

A similar assertion holds for auxiliary classical problem (1.6). 

4. S P A T I A L  O S C I L L A T I O N S  OF A D Y N A M I C A L L Y  S Y M M E T R I C A L  
A R T I F I C I A L  S A T E L L I T E  

Following the approach used in [12], we will consider the perturbed plane non-linear oscillations of 
an axisymmetrical artificial satellite (a rigid body), moving in a circular orbit. The equatorial axis remains 
approximately orthogonal to the plane of the orbit and the polar axis performs small angular oscillations 
about this plane. These oscillations are described, in the linear approximation, by a Hill-type equation 
with a periodic coefficient [12] 
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q" + f ( ~ ,  p~,,tx, k)03-2(oqk)q = O, f - (p~, + I) 2 -3(or - 1)sin 2 (4.1) 

Here the primes denote derivatives with respect to the argument of the angular variable w, with respect 
to which the funct ionfis  2n-periodic. The angular coordinate ~ and the momentumpv represent these 
plane oscillations of the polar axis. They are expressed using Jacobi elliptic functions sn and cn and the 
complete elliptic integral of the first kind K [13, 14] 

= arcsin{ksn(v, k)}, v = (21rOK(k )w, p~, = k 3(-4~7- 1) cn(v, k) (4.2) 

o 3 = ( n 1 2 ) ( 3 ( ~ - l ) ) ~  lK(k) ,  k 2 = 2ho(3(ot-1)) -1, 0 ~  < k < l  

Here ot (1 ~< ct ~< 2) is the ratio of the polar and equatorial moments of inertia in the case of an 
"oblate" ellipsoid; in the case of a "prolate" ellipsoid (0 ~< ot ~< 1) in (4.2) we make the replacement 
~t --+ ~ + rt/2. As  in [12], we will confine ourselves to investigating the first case. Further, the modulus 
k of the elliptic functions is defined in terms of the constant energy h0 of the satellite oscillations, which 
must be fairly small: 2h0 < 3(~ - 1). If 2h > 3(tx - 1), the body performs rotations [12], which can be 
investigated in a similar way. According to (4.2) the modulus k defines the amplitude ~0 of plane 
oscillations: ~0 = arcsink, 0 ~< ~0 < n/2. 

Hence, Eq. (4.1) contains two independent parameters ot and h0. For applications it is of interest to 
construct periodic solutions, i.e. to determine the values of the parameters which admit of the existence 
of such solutions. From the mechanical point of view, the parameters tx and ~0 are clearer. It is required 
to determine the relations ot(~0) (or ~0(tx)), for which periodic solutions exist [12]. 

To use the method of accelerated convergence described in Section 3, it is more convenient to 
introduce the parameters ~, = (3(~ - 1)) -1/2 and k, taking into account the constraints 7v/> 3 -1/2 ~ 0.577, 
0 ~< k < 1 and the dimensionless time t = w/2rt, with respect to which the coefficient of Eq. (4.1) has 
a period of unity. As a result of these transformations, we arrive at the following generalized periodic 
problem of the form (1.1) 

/1 + I6K 2 (k)[(~, + k cos ~)2 _ k 2 sin 2 ~]q = 0, q(t + 1) = q(t) (4.3) 

t~ = 4K(k)41 - k 2 sin 2 ¢, ¢(0) = 0, 3 -)~ ~< ~. < ~, 0 ~< k < 1 

Note that, for small values of k, when we can neglect terms O(k2), the first equation of (4.3) can be 
reduced to the form of a Mathieu equation (~,2 --+ K £k --+ 7). Independent numerical integration of 
the equation for ~ enables the calculation of the coefficient of q to be simplified considerably; it is found 
in terms of Jacobi elliptic functions, i.e. trigonometric series [13, 14]. Further, it is preferable to calculate 
the complete elliptic integral of the first kind K(k) when 0 ~< k 2 ~< 0.99 using quadratures, in accordance 
with the definition, and when 0.99 < k 2 < 1 it is extremely convenient to use the asymptotic form [14] 

1 
(4.4) 

× = In(4/k'), k ' 2 = l - k  2 

,8 8 ,2 2 Representation (4.4) leads to a small error of the order k = 10- when k ~< 10-. Note that Eq. 
(4.3) as k 2 -+ 1 possesses a singularity, since K(k) ~ =. This case requires an asymptotic analysis (see 
below). 

Since the coefficient r(t, ~, k) in front of q in Eq. (4.3) is a symmetrical function of t, by (3.6) the 
construction of the solution of the generalized periodic problem reduces to two generalized Sturm- 
Liouville-type problems: (1) problems of the first kind for an odd function of q- and (2) problems of 
the second kind for an even function of q+, i.e. 

1) q - ( 0 ) = q - ( l ) = 0 ,  ~.=~.~(k), ~,-n(O)=n/2 

q~(t,k) = q-(t,~,n(k),k ), q~(t,O) = (ng) -l sinnnt (4.5) 

2) q*(O)=q*(1)=O, L=L+(k),  ~,+n(O)=n/2 

q+n(t,k)=q+(t,~,,,(k),k), q+n(t,O)=eosnr~t, n= l,2 .... 
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For values of k > 0 (0 ~< k z <~ 0.999) we use the procedure of continuation with respect to the 
parameter k and the scheme of the method of accelerated convergence, described in Section 3. The 
coefficient N (3.5) is calculated by simultaneous integration of the equation N = r~(t, ~, k)q 2 for each 
n and for each branch of the solutions indicated in (4.5). The corresponding highly accurate calculations 
of ~,](k) are shown in Fig. 1 for n = 1, 2 . . . . .  6. It should be noted that ~,](k) ~< 1/2. This leads to 
physically unrealizable values of 4. 4. ~ l ( a  1 > 2). The part of the branch ~,7(k) with 0 ~< k ~< 0.15 also leads 
to physically unrealizable values of ~,l(al > 2), but for k > 0.15 the values of L~(k) > 0.577, i.e. 

-T- a l  < 2. All the remaining branches of the resonance curve ~'n, n i> 2 turn out to be physically realizable 
T- 

(1 ~< c~ n < 2) and have a corresponding order of tangency when k = 0. 
From the theoretical and applied points of view the asymptotic form ~ ( k )  as k ---> 1 is of interest. 

From the form of the coefficient r(t, ~,, k) as k ~ 1 and the properties o_f elliptic functions (cn ---> 0, 
sn --~ 1, 0 < t < 1/2, 1/2 < t < 1), taking (4.4) into account, we obtain that ~,n(k) --~ 1. Unlike the classical 
curves (see, for example, the Ince-Strutt diagrams [1-3] and the Haupt diagrams [1]) the even and odd 
curves alternate in pairs. 

The resonance curves of ~ ( ~ 0 )  for the parameters a and ~t 0 which have a clearer mechanical 
interpretation are shown in Fig. 2. They are obtained by simple recalculation using the formulae 

-- 1 + (3Z,2) -1, W0 -- arcsink. It is worth presenting both sets of resonance curves (Figs 1 and 2). It 
is interesting to note that the resonance curve al(~0) when ~0 >~ 0.16 cuts off a considerable part of 
the domain of admissible values of the parameters c~ and ~0. It follows from the above analysis that 

4- ot~(~0 ) ~ 4/3 as ~0 ---> n/2. The curves of ~ and a n also alternate in pairs. 
The problem of the stability and instability of the oscillations of the satellite with respect to spatial 

perturbations both in the linear approximation and in the framework of the complete non-linear model 
[12], requires further detailed investigation. Linear oscillations can be effectively analysed using the 
method of accelerated convergence described in Section 3 and methods of the theory of the stability 
of motion of Hamiltonian systems. 

The resonance curves ~,(k) or a(~0) in the case of rotations of the satellite (2h0 > 3(c~ - 1)) can be 
calculated in a similar way. The results of the calculations presented above confirm the undoubted high 
efficiency of the method of accelerated convergence for solving complex generalized periodic problems, 
which cannot easily be solved by other familiar approaches. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-0022 
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